Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Front Mol Biosci ; 10: 1133123, 2023.
Article in English | MEDLINE | ID: covidwho-2278924

ABSTRACT

The COVID-19 pandemic caused by SARS-CoV-2 has caused millions of infections and deaths worldwide. Limited treatment options and the threat from emerging variants underline the need for novel and widely accessible therapeutics. G-quadruplexes (G4s) are nucleic acid secondary structures known to affect many cellular processes including viral replication and transcription. We identified heretofore not reported G4s with remarkably low mutation frequency across >5 million SARS-CoV-2 genomes. The G4 structure was targeted using FDA-approved drugs that can bind G4s - Chlorpromazine (CPZ) and Prochlorperazine (PCZ). We found significant inhibition in lung pathology and lung viral load of SARS-CoV-2 challenged hamsters when treated with CPZ or PCZ that was comparable to the widely used antiviral drug Remdesivir. In support, in vitro G4 binding, inhibition of reverse transcription from RNA isolated from COVID-infected humans, and attenuated viral replication and infectivity in Vero cell cultures were clear in case of both CPZ and PCZ. Apart from the wide accessibility of CPZ/PCZ, targeting relatively invariant nucleic acid structures poses an attractive strategy against viruses like SARS-CoV-2, which spread fast and accumulate mutations quickly.

2.
Int J Biol Macromol ; 231: 123282, 2023 Mar 15.
Article in English | MEDLINE | ID: covidwho-2237653

ABSTRACT

Porcine epidemic diarrhea virus (PEDV), an enteropathogenic coronavirus, has catastrophic impacts on the global pig industry. However, there are still no anti-PEDV drugs with accurate targets. G-quadruplexes (G4s) are non-canonical secondary structures formed within guanine-rich regions of DNA or RNA, and have attracted great attention as potential targets for antiviral strategy. In this study, we reported two putative G4-forming sequences (PQS) in S and Nsp5 genes of PEDV genome based on bioinformatic analysis, and identified that S-PQS and Nsp5-PQS were enabled to fold into G4 structure by using circular dichroism spectroscopy and fluorescence turn-on assay. Furthermore, we verified that both S-PQS and Nsp5-PQS PQS could form G4 structure in live cells by immunofluorescence microscopy. In addition, G4-specific compounds, such as TMPyP4 and PDS, could significantly inhibit transcription, translation and proliferation of PEDV in vitro. Importantly, these compounds exert antiviral activity at the post-entry step of PEDV infection cycle, by inhibiting viral genome replication and protein expression. Lastly, we demonstrated that TMPyP4 can inhibit reporter gene expression by targeting G4 structure in Nsp5. Taken together, these findings not only reinforce the presence of viral G-quadruplex sequences in PEDV genome but also provide new insights into developing novel antiviral drugs targeting PEDV RNA G-quadruplexes.


Subject(s)
Coronavirus , G-Quadruplexes , Porcine epidemic diarrhea virus , Animals , Swine , Antiviral Agents , Porcine epidemic diarrhea virus/genetics , Coronavirus/genetics , Virus Replication
3.
Genes (Basel) ; 14(1)2023 01 06.
Article in English | MEDLINE | ID: covidwho-2166370

ABSTRACT

Non-B nucleic acids structures have arisen as key contributors to genetic variation in SARS-CoV-2. Herein, we investigated the presence of defining spike protein mutations falling within inverted repeats (IRs) for 18 SARS-CoV-2 variants, discussed the potential roles of G-quadruplexes (G4s) in SARS-CoV-2 biology, and identified potential pseudoknots within the SARS-CoV-2 genome. Surprisingly, there was a large variation in the number of defining spike protein mutations arising within IRs between variants and these were more likely to occur in the stem region of the predicted hairpin stem-loop secondary structure. Notably, mutations implicated in ACE2 binding and propagation (e.g., ΔH69/V70, N501Y, and D614G) were likely to occur within IRs, whilst mutations involved in antibody neutralization and reduced vaccine efficacy (e.g., T19R, ΔE156, ΔF157, R158G, and G446S) were rarely found within IRs. We also predicted that RNA pseudoknots could predominantly be found within, or next to, 29 mutations found in the SARS-CoV-2 spike protein. Finally, the Omicron variants BA.2, BA.4, BA.5, BA.2.12.1, and BA.2.75 appear to have lost two of the predicted G4-forming sequences found in other variants. These were found in nsp2 and the sequence complementary to the conserved stem-loop II-like motif (S2M) in the 3' untranslated region (UTR). Taken together, non-B nucleic acids structures likely play an integral role in SARS-CoV-2 evolution and genetic diversity.


Subject(s)
COVID-19 , Nucleic Acids , Humans , Spike Glycoprotein, Coronavirus/genetics , SARS-CoV-2/genetics , COVID-19/genetics , Genomics , 3' Untranslated Regions
4.
Front Chem ; 10: 1014663, 2022.
Article in English | MEDLINE | ID: covidwho-2154652

ABSTRACT

COVID-19 (Corona Virus Disease 2019), SARS (Severe Acute Respiratory Syndrome) and MERS (Middle East Respiratory Syndrome) are infectious diseases each caused by coronavirus outbreaks. Small molecules and other therapeutics are rapidly being developed to treat these diseases, but the threat of new variants and outbreaks argue for the identification of additional viral targets. Here we identify regions in each of the three coronavirus genomes that are able to form G-quadruplex (G4) structures. G4s are structures formed by DNA or RNA with a core of two or more stacked planes of guanosine tetrads. In recent years, numerous DNA and RNA G4s have emerged as promising pharmacological targets for the treatment of cancer and viral infection. We use a combination of bioinformatics and biophysical approaches to identify conserved RNA G4 regions from the ORF1A and S sequences of SARS-CoV, SARS-CoV-2 and MERS-CoV. Although a general depletion of G4-forming regions is observed in coronaviridae, the preservation of these selected G4 sequences support a significance in viral replication. Targeting these RNA structures may represent a new antiviral strategy against these viruses distinct from current approaches that target viral proteins.

5.
Int J Biol Macromol ; 221: 1476-1490, 2022 Nov 30.
Article in English | MEDLINE | ID: covidwho-2031330

ABSTRACT

The coronavirus SARS-CoV-2 has caused a health care crisis all over the world since the end of 2019. Although vaccines and neutralizing antibodies have been developed, rapidly emerging variants usually display stronger immune escape ability and can better surpass vaccine protection. Therefore, it is still vital to find proper treatment strategies. To date, antiviral drugs against SARS-CoV-2 have mainly focused on proteases or polymerases. Notably, noncanonical nucleic acid structures called G-quadruplexes (G4s) have been identified in many viruses in recent years, and numerous G4 ligands have been developed. During this pandemic, literature on SARS-CoV-2 G4s is rapidly accumulating. Here, we first summarize the recent progress in the identification of SARS-CoV-2 G4s and their intervention by ligands. We then introduce the potential interacting proteins of SARS-CoV-2 G4s from both the virus and the host that may regulate G4 functions. The innovative strategy to use G4s as a diagnostic tool in SARS-CoV-2 detection is also reviewed. Finally, we discuss some key questions to be addressed in the future.


Subject(s)
COVID-19 , G-Quadruplexes , Humans , SARS-CoV-2 , Ligands , COVID-19/diagnosis , Pandemics
6.
Int J Biol Macromol ; 219: 414-427, 2022 Oct 31.
Article in English | MEDLINE | ID: covidwho-1977348

ABSTRACT

Guanine-rich DNA sequences may fold back into non-canonical four-stranded secondary structures termed as G-quadruplexes. The role of G-quadruplexes has already been well established in different diseases like cancer, neurological and viral disorders etc. Also, several small molecules have been reported, which can influence the involvement of G-quadruplexes either through stabilization or destabilization in the cellular environment. Growing statistics have associated G-quadruplex assemblies to a discrete biological process in vivo, including DNA replication, transcription, genomic stability, and epigenetic regulation. DNA G-quadruplex existence in human telomere is well recognized attractive target for anticancer drugs. G-quadruplex-interactive ligands have been known to prevent telomerase access as well as telomere capping. To the best of our understanding, the role of G-quadruplexes in virology, neuropharmacology, cancer progression and its treatment has not been discussed on a single platform till date. This review aims to enhance our knowledge regarding these magical sticky quadruplex structures, which have been quite significantly proved to be the part of many cellular processes along with their established in vivo existence. Understanding regarding stabilizing or destabilizing ligands of these multistranded guanine quadruplex structures might be proved as the facilitator of drug discovery process for many incurable diseases in future.


Subject(s)
Antineoplastic Agents , G-Quadruplexes , Telomerase , Antineoplastic Agents/pharmacology , DNA/chemistry , Epigenesis, Genetic , Guanine/chemistry , Humans , Ligands , Telomerase/chemistry , Telomere/genetics , Telomere/metabolism
7.
Int J Mol Sci ; 23(10)2022 May 19.
Article in English | MEDLINE | ID: covidwho-1862813

ABSTRACT

Previous studies suggest that berberine, an isoquinoline alkaloid, has antiviral potential and is a possible therapeutic candidate against SARS-CoV-2. The molecular underpinnings of its action are still unknown. Potential targets include quadruplexes (G4Q) in the viral genome as they play a key role in modulating the biological activity of viruses. While several DNA-G4Q structures and their binding properties have been elucidated, RNA-G4Qs such as RG-1 of the N-gene of SARS-CoV-2 are less explored. Using biophysical techniques, the berberine binding thermodynamics and the associated conformational and hydration changes of RG-1 could be characterized and compared with human telomeric DNA-G4Q 22AG. Berberine can interact with both quadruplexes. Substantial changes were observed in the interaction of berberine with 22AG and RG-1, which adopt different topologies that can also change upon ligand binding. The strength of interaction and the thermodynamic signatures were found to dependent not only on the initial conformation of the quadruplex, but also on the type of salt present in solution. Since berberine has shown promise as a G-quadruplex stabilizer that can modulate viral gene expression, this study may also contribute to the development of optimized ligands that can discriminate between binding to DNA and RNA G-quadruplexes.


Subject(s)
Berberine , COVID-19 Drug Treatment , Berberine/pharmacology , DNA/chemistry , Humans , RNA/metabolism , SARS-CoV-2
8.
Immunogenetics ; 74(5): 455-463, 2022 10.
Article in English | MEDLINE | ID: covidwho-1750684

ABSTRACT

G-quadruplex structure or Putative Quadruplex Sequences (PQSs) are abundant in human, microbial, DNA, or RNA viral genomes. These sequences in RNA viral genome play critical roles in integration into human genome as LTR (Long Terminal Repeat), genome replication, chromatin rearrangements, gene regulation, antigen variation (Av), and virulence. Here, we investigated whether the genome of SARS-CoV2, an RNA virus, contained such potential G-quadruplex structures. Using bioinformatic tools, we searched for such sequences and found thirty-seven (forward strand (twenty-five) + reverse strand (Twelve)) QGRSs (Quadruplex forming G-Rich Sequences)/PQSs in SARS-CoV2 genome. These sequences are dispersed mainly in the upstream of SARS-CoV2 genes. We discuss whether existing PQS/QGRS ligands could inhibit the SARS-CoV2 replication and gene transcription as has been observed in other RNA viruses. Further experimental validation would determine the role of these G-quadruplex sequences in SARS-CoV2 genome function to survive in the host cells and identify therapeutic agents to destabilize these PQSs/QGRSs.


Subject(s)
COVID-19 , G-Quadruplexes , COVID-19/genetics , DNA , Humans , RNA, Viral/chemistry , RNA, Viral/genetics , SARS-CoV-2/genetics
9.
Chemistry ; 28(9): e202104182, 2022 Feb 16.
Article in English | MEDLINE | ID: covidwho-1750334

ABSTRACT

Given the emergence of the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2), which particularly threatens older people with comorbidities such as diabetes mellitus and dementia, understanding the relationship between Covid-19 and other diseases is an important factor for treatment. Possible targets for medical intervention include G-quadruplexes (G4Qs) and their protein interaction partners. We investigated the stability and conformational space of the RG-1 RNA-G-quadruplex of the SARS-CoV-2 N-gene in the presence of salts, cosolutes, crowders and intrinsically disordered peptides, focusing on α-Synuclein and the human islet amyloid polypeptide, which are involved in Parkinson's disease (PD) and type-II diabetes mellitus (T2DM), respectively. We found that the conformational dynamics of the RG-1 G4Q is strongly affected by the various solution conditions. Further, the amyloidogenic peptides were found to strongly modulate the conformational equilibrium of the RG-1. Considerable changes are observed with respect to their interaction with human telomeric G4Qs, which adopt different topologies. These results may therefore shed more light on the relationship between PD as well as T2DM and the SARS-CoV-2 disease and their molecular underpinnings. Since dysregulation of G4Q formation by rationally designed targeting compounds affects the control of cellular processes, this study should contribute to the development of specific ligands for intervention.


Subject(s)
COVID-19 , SARS-CoV-2 , Aged , Humans , Islet Amyloid Polypeptide/metabolism , Peptides , RNA, Viral , alpha-Synuclein/chemistry
10.
ACS Sens ; 7(2): 453-459, 2022 02 25.
Article in English | MEDLINE | ID: covidwho-1655454

ABSTRACT

Unravelling unique molecular targets specific to viruses is challenging yet critical for diagnosing emerging viral diseases. Nucleic acids and proteins are the major targets in diagnostic assays of viral pathogens. Identification of novel sequences and conformations of nucleic acids as targets is desirable for developing diagnostic assays specific to a virus of interest. Here, we disclose the identification and characterization of a highly conserved antiparallel G-quadruplex (GQ)-forming DNA sequence present within the SARS-CoV-2 genome. The two-quartet GQ with unique loop compositions formed a distinct recognition motif. Design, synthesis, and fine tuning of structure-activity of a set of small molecules led to the identification of a benzobisthiazole-based fluorogenic probe which unambiguously recognizes the target SARS-CoV-2 GQ DNA. A robust cost-effective assay was developed through thermal cycler PCR-based amplification of the antiparallel GQ-forming ORF1ab region of the SARS-CoV-2 genome and endpoint fluorescence detection with the probe. An exclusive pH window (3.5-4) helped trigger reliable conformational polymorphism (RCP) involving DNA duplex to GQ transformation, which aided the development of a GQ-RCP platform for the diagnosis of SARS-CoV-2 clinical samples. This general strategy can be adapted for the development of specific diagnostic assays targeting different noncanonical nucleic acid sequences.


Subject(s)
COVID-19 , G-Quadruplexes , COVID-19/diagnosis , Humans , Hydrogen-Ion Concentration , Nucleic Acid Amplification Techniques , SARS-CoV-2/genetics
11.
Sens Actuators B Chem ; 357: 131409, 2022 Apr 15.
Article in English | MEDLINE | ID: covidwho-1616767

ABSTRACT

Primer exchange reaction (PER) is an emergent method for non-templated synthesis of single stranded DNA molecules. PER has been shown to be effective in cell imaging systems and for detection of macromolecules. A particular application of PER is to detect a specific target nucleic acid. To this endeavor, two coupled DNA hairpins, a detector and an amplifier, play in accordance to extend a target nucleic acid with a concatemer DNA sequence. Here we introduced unified-amplifier based primer exchange reaction (UniAmPER) that beneficially extends the target by a unified-amplifier. The unified-amplifier operates as both detector and amplifier hairpins. The extension resulted in synthesis of concatemer G-rich sequences. The G-rich sequences were expected to form G-quadruplex (GQ) structures. Presence of the GQ structures were investigated by peroxidase activity of GQs in presence of hemin, H2°2 and 3,3',5,5'-Tetramethylbenzidine (TMB) as well as by fluorescence signal generation upon intercalation of thioflavin T (ThT). The presented unified-amplifier in this study facilitates application of PER systems for development of colorimetric or fluorogenic biosensors. As a proof of principle, the method has been applied for detection of reversely transcribed cDNAs from clinical SARS-CoV-2 samples.

12.
ACS Synth Biol ; 11(1): 317-324, 2022 01 21.
Article in English | MEDLINE | ID: covidwho-1586042

ABSTRACT

Current tools for detecting transgenic crops, such as polymerase chain reaction (PCR), require professional equipment and complex operation. Herein, we introduce a clustered regularly interspaced short palindromic repeats (CRISPR)/Cas system to analyze transgenes by designing an isothermal amplification to serve as the amplified reporter, allowing an isothermal and label-free detection of transgenic crops. The use of Cas12a allowed direct and specific recognition of transgenes. To enhance the sensitivity of the assay, we used rolling circle amplification (RCA) to monitor the recognition of transgenes by designing the RCA primer as the cleavage substrate of Cas12a. The presence of transgenes can be detected by monitoring the G-quadruplex in RCA amplicon using a G-quadruplex binding dye, N-methyl mesoporphyrin IX (NMM). We termed the assay as isoCRISPR and showed that the assay allowed distinguishing transgenic corn cultivars ("Bt11" and "MON89034") from nontransgenic corn cultivars ("yellow", "shenyu", "xianyu", and "jingke"). The isoCRISPR assay will enrich the toolbox for transgenic crop identification and broaden the application of CRISPR/Cas in food authenticity and safety.


Subject(s)
Biosensing Techniques , G-Quadruplexes , CRISPR-Cas Systems/genetics , Nucleic Acid Amplification Techniques , Polymerase Chain Reaction
13.
Biosens Bioelectron ; 198: 113829, 2022 Feb 15.
Article in English | MEDLINE | ID: covidwho-1525700

ABSTRACT

Common reference methods for COVID-19 diagnosis include thermal cycling amplification (e.g. RT-PCR) and isothermal amplification methods (e.g. LAMP and RPA). However, they may not be suitable for direct detection in environmental and biological samples due to background signal interference. Here, we report a rapid and label-free interference reduction nucleic acid amplification strategy (IR-NAAS) that exploits the advantages of luminescent iridium(III) probes, time-resolved emission spectroscopy (TRES) and multi-branch rolling circle amplification (mbRCA). Using IR-NAAS, we established a luminescence approach for diagnosing COVID-19 RNAs sequences RdRp, ORF1ab and N with a linear range of 0.06-6.0 × 105 copies/mL and a detection limit of down to 7.3 × 104 copies/mL. Moreover, the developed method was successfully applied to detect COVID-19 RNA sequences from various environmental and biological samples, such as domestic sewage, and mice urine, blood, feces, lung tissue, throat and nasal secretions. Apart from COVID-19 diagnosis, IR-NAAS was also demonstrated for detecting other RNA viruses, such as H1N1 and CVA10, indicating that this approach has great potential approach for routine preliminary viral detection.


Subject(s)
Biosensing Techniques , COVID-19 , Influenza A Virus, H1N1 Subtype , Animals , COVID-19 Testing , DNA , Humans , Mice , Nucleic Acid Amplification Techniques , RNA, Viral/genetics , SARS-CoV-2
14.
Int J Mol Sci ; 22(20)2021 Oct 12.
Article in English | MEDLINE | ID: covidwho-1463715

ABSTRACT

G-quadruplexes (G4s) are noncanonical nucleic acid structures involved in the regulation of key cellular processes, such as transcription and replication. Since their discovery, G4s have been mainly investigated for their role in cancer and as targets in anticancer therapy. More recently, exploration of the presence and role of G4s in viral genomes has led to the discovery of G4-regulated key viral pathways. In this context, employment of selective G4 ligands has helped to understand the complexity of G4-mediated mechanisms in the viral life cycle, and highlighted the possibility to target viral G4s as an emerging antiviral approach. Research in this field is growing at a fast pace, providing increasing evidence of the antiviral activity of old and new G4 ligands. This review aims to provide a punctual update on the literature on G4 ligands exploited in virology. Different classes of G4 binders are described, with emphasis on possible antiviral applications in emerging diseases, such as the current COVID-19 pandemic. Strengths and weaknesses of G4 targeting in viruses are discussed.


Subject(s)
Antiviral Agents/chemistry , G-Quadruplexes , Antiviral Agents/therapeutic use , COVID-19/virology , DNA, Viral/chemistry , DNA, Viral/metabolism , Humans , Ligands , MicroRNAs/antagonists & inhibitors , MicroRNAs/metabolism , RNA, Viral/chemistry , RNA, Viral/metabolism , SARS-CoV-2/isolation & purification , Virus Diseases/drug therapy , Virus Diseases/pathology , COVID-19 Drug Treatment
15.
Pharmaceutics ; 13(8)2021 Jul 21.
Article in English | MEDLINE | ID: covidwho-1376931

ABSTRACT

G-quadruplex (G4) forming DNA sequences were recently found to play a crucial role in the regulation of genomic processes such as replication, transcription and translation, also related to serious diseases. Therefore, systems capable of controlling DNA and RNA G-quadruplex structures would be useful for the modulation of various cellular events. In particular, peptides represent good candidates for targeting G-quadruplex structures, since they are easily tailored to enhance their functionality. In this work, we analyzed, by circular dichroism and synchrotron radiation circular dichroism spectroscopies, the interaction of a 25-residue peptide deriving from RHAU helicases (Rhau25) with three G-quadruplex-forming oligonucleotide sequences, in both sodium- and potassium-containing buffers, the most relevant monovalent cations in physiological conditions. The peptide displayed greater affinity for the G4 sequences adopting a parallel structure. However, it showed the ability to also interact with antiparallel or hybrid G-quadruplex structures, inducing a conformation conversion to the parallel structure. The stability of the oligonucleotide structure alone or in presence of the Rhau25 peptide was studied by temperature melting and UV denaturation experiments, and the data showed that the interaction with the peptide stabilized the conformation of oligonucleotide sequences when subjected to stress conditions.

16.
Pharmaceuticals (Basel) ; 14(8)2021 Aug 05.
Article in English | MEDLINE | ID: covidwho-1376929

ABSTRACT

Progress in the design of G-quadruplex (G4) binding ligands relies on the availability of approaches that assess the binding mode and nature of the interactions between G4 forming sequences and their putative ligands. The experimental approaches used to characterize G4/ligand interactions can be categorized into structure-based methods (circular dichroism (CD), nuclear magnetic resonance (NMR) spectroscopy and X-ray crystallography), affinity and apparent affinity-based methods (surface plasmon resonance (SPR), isothermal titration calorimetry (ITC) and mass spectrometry (MS)), and high-throughput methods (fluorescence resonance energy transfer (FRET)-melting, G4-fluorescent intercalator displacement assay (G4-FID), affinity chromatography and microarrays. Each method has unique advantages and drawbacks, which makes it essential to select the ideal strategies for the biological question being addressed. The structural- and affinity and apparent affinity-based methods are in several cases complex and/or time-consuming and can be combined with fast and cheap high-throughput approaches to improve the design and development of new potential G4 ligands. In recent years, the joint use of these techniques permitted the discovery of a huge number of G4 ligands investigated for diagnostic and therapeutic purposes. Overall, this review article highlights in detail the most commonly used approaches to characterize the G4/ligand interactions, as well as the applications and types of information that can be obtained from the use of each technique.

17.
Molecules ; 26(16)2021 Aug 19.
Article in English | MEDLINE | ID: covidwho-1376915

ABSTRACT

G-quadruplexes (G4s) are higher-order supramolecular structures, biologically important in the regulation of many key processes. Among all, the recent discoveries relating to RNA-G4s, including their potential involvement as antiviral targets against COVID-19, have triggered the ever-increasing need to develop selective molecules able to interact with parallel G4s. Naphthalene diimides (NDIs) are widely exploited as G4 ligands, being able to induce and strongly stabilize these structures. Sometimes, a reversible NDI-G4 interaction is also associated with an irreversible one, due to the cleavage and/or modification of G4s by functional-NDIs. This is the case of NDI-Cu-DETA, a copper(II) complex able to cleave G4s in the closest proximity to the target binding site. Herein, we present two original Cu(II)-NDI complexes, inspired by NDI-Cu-DETA, differently functionalized with 2-(2-aminoethoxy)ethanol side-chains, to selectively drive redox-catalyzed activity towards parallel G4s. The selective interaction toward parallel G4 topology, controlled by the presence of 2-(2-aminoethoxy)ethanol side chains, was already firmly demonstrated by us using core-extended NDIs. In the present study, the presence of protonable moieties and the copper(II) cavity, increases the binding affinity and specificity of these two NDIs for a telomeric RNA-G4. Once defined the copper coordination relationship and binding constants by competition titrations, ability in G4 stabilization, and ROS-induced cleavage were analyzed. The propensity in the stabilization of parallel topology was highlighted for both of the new compounds HP2Cu and PE2Cu. The results obtained are particularly promising, paving the way for the development of new selective functional ligands for binding and destructuring parallel G4s.


Subject(s)
Coordination Complexes/chemistry , Copper/chemistry , G-Quadruplexes , Imides/chemistry , Naphthalenes/chemistry , Binding Sites , DEET/chemistry , Ligands , Oxidation-Reduction , Polyethylene Glycols/chemistry , Structure-Activity Relationship
18.
Brief Bioinform ; 22(2): 1150-1160, 2021 03 22.
Article in English | MEDLINE | ID: covidwho-1352102

ABSTRACT

The outbreak caused by the novel coronavirus SARS-CoV-2 has been declared a global health emergency. G-quadruplex structures in genomes have long been considered essential for regulating a number of biological processes in a plethora of organisms. We have analyzed and identified 25 four contiguous GG runs (G2NxG2NyG2NzG2) in the SARS-CoV-2 RNA genome, suggesting putative G-quadruplex-forming sequences (PQSs). Detailed analysis of SARS-CoV-2 PQSs revealed their locations in the open reading frames of ORF1 ab, spike (S), ORF3a, membrane (M) and nucleocapsid (N) genes. Identical PQSs were also found in the other members of the Coronaviridae family. The top-ranked PQSs at positions 13385 and 24268 were confirmed to form RNA G-quadruplex structures in vitro by multiple spectroscopic assays. Furthermore, their direct interactions with viral helicase (nsp13) were determined by microscale thermophoresis. Molecular docking model suggests that nsp13 distorts the G-quadruplex structure by allowing the guanine bases to be flipped away from the guanine quartet planes. Targeting viral helicase and G-quadruplex structure represents an attractive approach for potentially inhibiting the SARS-CoV-2 virus.


Subject(s)
COVID-19/virology , G-Quadruplexes , SARS-CoV-2/chemistry , Humans , Molecular Docking Simulation , Open Reading Frames
19.
Int J Mol Sci ; 22(15)2021 Jul 27.
Article in English | MEDLINE | ID: covidwho-1335095

ABSTRACT

G-quadruplexes are the non-canonical nucleic acid structures that are preferentially formed in G-rich regions. This structure has been shown to be associated with many biological functions. Regardless of the broad efforts on DNA G-quadruplexes, we still have limited knowledge on RNA G-quadruplexes, especially in a transcriptome-wide manner. Herein, by integrating the DMS-seq and the bioinformatics pipeline, we profiled and depicted the RNA G-quadruplexes in the human transcriptome. The genes that contain RNA G-quadruplexes in their specific regions are significantly related to immune pathways and the COVID-19-related gene sets. Bioinformatics analysis reveals the potential regulatory functions of G-quadruplexes on miRNA targeting at the scale of the whole transcriptome. In addition, the G-quadruplexes are depleted in the putative, not the real, PAS-strong poly(A) sites, which may weaken the possibility of such sites being the real cleaved sites. In brief, our study provides insight into the potential function of RNA G-quadruplexes in post-transcription.


Subject(s)
G-Quadruplexes , Transcriptome/genetics , COVID-19/genetics , Cell Line , Computational Biology , Gene Expression Profiling , Humans , MicroRNAs/chemistry , MicroRNAs/metabolism , Poly A/genetics , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Untranslated Regions/genetics
20.
Cell Chem Biol ; 28(5): 594-609, 2021 05 20.
Article in English | MEDLINE | ID: covidwho-1271598

ABSTRACT

Initial successes in developing small molecule ligands for non-coding RNAs have underscored their potential as therapeutic targets. More recently, these successes have been aided by advances in biophysical and structural techniques for identification and characterization of more complex RNA structures; these higher-level folds present protein-like binding pockets that offer opportunities to design small molecules that could achieve a degree of selectivity often hard to obtain at the primary and secondary structure level. More specifically, identification and small molecule targeting of RNA tertiary and quaternary structures have allowed researchers to probe several human diseases and have resulted in promising clinical candidates. In this review we highlight a selection of diverse and exciting successes and the experimental approaches that led to their discovery. These studies include examples of recent developments in RNA-centric assays and ligands that provide insight into the features responsible for the affinity and biological outcome of RNA-targeted chemical probes. This report highlights the potential and emerging opportunities to selectively target RNA tertiary and quaternary structures as a route to better understand and, ultimately, treat many diseases.


Subject(s)
RNA/drug effects , Small Molecule Libraries/pharmacology , Humans , Ligands , Nucleic Acid Conformation , RNA/chemistry , Small Molecule Libraries/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL